EXERCICE 2A.1

Une expérience aléatoire conduit à l'observation de trois événements A, B et C. On sait que :

$$P(A) = 0.15$$

$$P(B) = 0.3$$

$$P(C) = 0.4$$

$$P(A \cup B) = 0.42$$

$$P(A \cap C) = 0.05$$

B et C sont incompatibles

Calculer la probabilité des évènements suivants :

1.
$$P(\overline{A}) =$$

2.
$$P(B \cup C) =$$

3.
$$P(A \cap B) =$$

4.
$$P(A \cap \overline{C}) =$$

5.
$$P(\overline{A} \cap \overline{B}) =$$

EXERCICE 2A.2

A et B sont deux événements. Dans chaque cas, expliquer pourquoi les affirmations sont fausses.

1.
$$P(A) = 0.7$$
; $P(B) = 0.4$; A et B sont incompatibles.

2.
$$P(A) = 0.7$$
; $P(B) = 1.2$

3.
$$P(A) = 0.7$$
; $P(B) = -0.2$

4.
$$P(A) = 0.3$$
; $P(B) = 0.4$; $P(A \cap B) = 0.5$

5.
$$P(A) = 0.65$$
; $P(A \cap B) = 0.43$; $P(A \cap \overline{B}) = 0.21$

EXERCICE 2A.3

On lance un dé à 6 faces, qui est truqué de telle façon que :

$$P(1) = 0.05$$

et

$$P(2) = P(3) = P(4) = P(5) = 0.15$$

- 1. Calculer P(6).
- 2. Calculer la probabilité des évènements suivants :

$$P(A) =$$

$$P(B) =$$

$$P(C) =$$

3. Traduire par une phrase chaque évènement puis calculer sa probabilité :

$$P(\overline{B}) =$$

$$A \cap B$$
:

$$P(A \cap B) =$$

$$A \cup B$$
:

$$P(A \cup B) =$$

$$A \cap B$$
:

$$P(\overline{A} \cap B) =$$

$$\overline{A} \cap \overline{B}$$
:

$$P(\overline{A} \cap \overline{B}) =$$

CORRIGE - NOTRE DAME DE LA MERCI - MONTPELLIER

EXERCICE 2A.1: Une expérience aléatoire conduit à l'observation de trois événements A, B et C.

On sait que:

$$p(A) = 0.15$$

$$p(B) = 0.3$$

$$p(C) = 0.4$$

$$p(A \cup B) = 0.42$$

$$p(A \cap C) = 0.05$$

Calculer la probabilité des évènements suivants : B et C sont incompatibles : $p(B \cap C) = 0$

1.
$$p(\overline{A}) = 1 - p(A) = 1 - 0.15 = 0.85$$

2.
$$p(B \cup C) = p(B) + p(C) - p(B \cap C) = 0.3 + 0.4 - 0 = 0.7$$

3.
$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

donc
$$p(A \cap B) = p(A) + p(B) - p(A \cup B) = 0.15 + 0.3 - 0.42 = 0.03$$

4.
$$p(A \cap C) + p(A \cap \overline{C}) = p(A)$$

donc
$$p(A \cap \overline{C}) = p(A) - p(A \cap C) = 0.15 - 0.05 = 0.10$$

5.
$$p(\overline{A}) = p(\overline{A} \cap B) + p(\overline{A} \cap \overline{B})$$

or
$$p(\overline{A}) = 0.85$$

et
$$p(B) = p(A \cap B) + p(\overline{A} \cap B)$$
 d'où $p(\overline{A} \cap B) = p(B) - p(A \cap B) = 0.3 - 0.03 = 0.27$

ainsi
$$\mathbf{p}(\overline{\mathbf{A}} \cap \overline{\mathbf{B}}) = \mathbf{p}(\overline{\mathbf{A}}) - \mathbf{p}(\overline{\mathbf{A}} \cap \mathbf{B}) = 0.85 - 0.27 = \mathbf{0.58}$$

EXERCICE 2A.2: A et B sont deux événements. Expliquer pourquoi les affirmations sont fausses.

1. p(A) = 0.7; p(B) = 0.4; A et B sont incompatibles.

⇒
$$p(A \cup B) = p(A) + p(B) - p(A \cap B) = 0.7 + 0.4 - p(A \cap B) = 1.1 - p(A \cap B)$$

or $0 \le p(A \cup B) \le 1$ donc $p(A \cap B) \ne 0$

- 2. p(A) = 0.7; p(B) = 1.2 une probabilité ne peut être supérieure à 1 : p(B) est incorrecte
- 3. p(A) = 0.7; p(B) = -0.2 une probabilité ne peut être négative : p(B) est incorrecte
- **4.** p(A) = 0.3; p(B) = 0.4; $p(A \cap B) = 0.5 \rightarrow 1$ 'intersection de deux évènements ne peut être plus grande que ces deux évènements réunis : $p(A \cap B)$ est incorrecte
- **5.** p(A) = 0.65; $p(A \cap B) = 0.43$; $p(A \cap \overline{B}) = 0.21$ \rightarrow les évènements B et \overline{B} étant disjoints et complémentaires, $p(A \cap B) + p(A \cap \overline{B})$ doit être égal à 1, ce qui n'est ici pas le cas.

EXERCICE 2A.3: On lance un dé à 6 faces, qui est truqué de telle façon que :

$$p(1) = 0.05$$

$$p(2) = p(3) = p(4) = p(5) = 0.15$$

1. Calculer p(6).

$$\rightarrow$$
 p(1) + p(2) + p(3) + p(4) + p(5) + p(6) = 1 donc p(6) = 1 - 0.05 - 4 × 0.15 = 0.35

2. Calculer la probabilité des évènements suivants :

$$p(A) = 1 - p(1) = 1 - 0.05 = 0.95$$

$$p(B) = p(1) + p(3) + p(5) = 0.35$$

$$p(C) = p(3) + p(4) + p(5) + p(6) = 0.80$$

3. Traduire par une phrase chaque évènement puis calculer sa probabilité :

$$\overline{B}$$
 : « obtenir un nombre pair »

$$p(\overline{B}) = 1 - p(B) = 1 - 0.35 = 0.65$$

$$A \cap B$$
: « obtenir un nombre égal à 3 ou à 5 »

$$p(A \cap B) = p(3) + p(5) = 0.30$$

$$A \cup B$$
: « obtenir un nombre compris entre 1 et 6 »

$$p(A \cup B) = 1$$

$$\overline{A} \cap B$$
: « obtenir un nombre égal à 1 »

$$p(\overline{A} \cap B) = p(1) = 0.05$$

$$\overline{A} \cap \overline{B}$$
: « obtenir un nombre à la fois égal à 1 et pair »

$$p(\overline{A} \cap \overline{B}) = 0$$