
EXERCICE 9A.1

On a tracé dans quatre repères les courbes C_f , C_g , C_h et C_k qui représentent les fonctions f, g, h et k.

a. Résoudre graphiquement les équations :

$$f(x) = 3$$

$$g(x) = 2$$

$$h(x) = 3$$

$$k(x) = -4$$

b. Résoudre graphiquement les équations :

$$f(x) = -2$$

$$g(x) = -4$$

$$h(x) = -1$$

$$k(x) = 1$$

c. Résoudre graphiquement les inéquations :

$$f(x) \ge 3$$

$$g(x) \le 2$$

$$k(x) > -4$$

 $\boldsymbol{d.}$ Résoudre graphiquement les $\boldsymbol{in\acute{e}quations}$:

$$f(x) < -2$$

$$g(x) \ge -4$$

$$h(x) > -1$$

$$k(x) \le 1$$

EXERCICE 9A.2

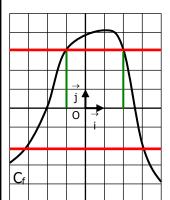
On a tracé dans le même repère les courbes C_f , C_g et C_h qui représentent les fonctions f, g et h, définies sur l'intervalle [-8;8]

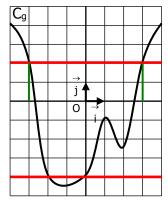
a. Résoudre graphiquement l'équation f(x) = g(x).

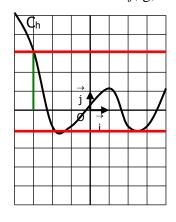
b. Résoudre graphiquement l'équation f(x) = h(x).

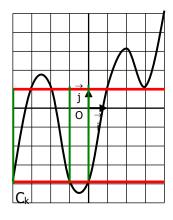
c. Résoudre graphiquement l'équation g(x) = h(x).

d. Résoudre graphiquement l'inéquation $f(x) \ge g(x)$.


e. Résoudre graphiquement l'inéquation f(x) < h(x).


f.Résoudre graphiquement l'inéquation g(x) > h(x).




CORRIGE – NOTRE DAME DE LA MERCI - MONTPELLIER

EXERCICE 9A.1: Les courbes C_f , C_g , C_h et C_k qui représentent les fonctions f, g, h et k.

a. Résoudre graphiquement les équations :

$$f(x) = 3$$
 $g(x) = 2$
 $\sin x = -1 \text{ ou } x = 2$ $\sin x = -3 \text{ ou } x = 3$

$$g(x) = 2$$

$$x = -3 \text{ ou } x = 3$$

$$h(x) = 3$$

$$si x = -3$$

$$k(x) = -4$$

$$si x = -4 ou x = -1$$

$$ou x = 0$$

b. Résoudre graphiquement les **équations** :

$$f(x) = -2$$

$$\sin x = -3 \text{ ou } x = 3$$

$$g(x) = -4$$

$$\sin x = -2 \text{ ou } x = 0$$

$$g(x) = -4$$
 $h(x) = -1$
 $\sin x = -2$ ou $x = 0$ $\sin x = -1.8$ ou $x = 2.5$

$$si x = -3 ou x = -2$$

$$ou x = 3$$

c. Résoudre graphiquement les inéquations :

$$f(x) \ge 3$$

si $x \in [-1; 2]$

$$g(x) \le 2$$

si $x \in [-3; 3]$

$$h(x) < 3$$

si $x \in]-3; 4]$

$$k(x) > -4$$
 si $x \in]-4$; -1[\cup]0; 4]

d. Résoudre graphiquement les **inéquations** :

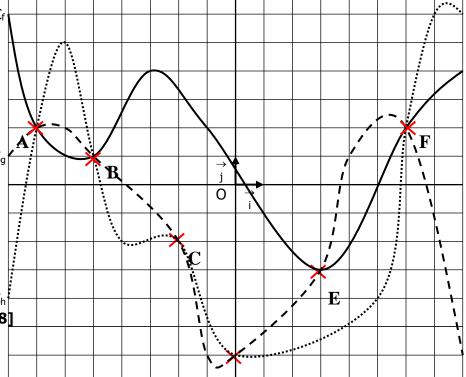
$$f(x) < -2$$
 si

$$g(x) \ge -4$$

$$g(x) \ge -4$$
 $h(x) > -1$ si $x \in [-4; -1,7[$

$$f(x) < -2 \text{ si}$$
 $g(x) \ge -4$ $h(x) > -1 \text{ si } x \in [-4; -1,7[$ $k(x) \le 1 \text{ si } x \in [-4; -3[\cup]3; 4]$ $\text{si } x \in [-4; -2] \cup [0; 4]$ $\cup [-1,7; 2,5[\cup]2,5; 4]$ $x \in [-4; -3] \cup [-2; 1]$

EXERCICE 9A.2: Les courbes C_f , C_g et C_h représentent les fonctions f, g et h, définies sur l'intervalle [-8; 8]


a. Les courbes C_f et C_g se coupent C_f en A, B, E et F, donc l'équation f(x) = g(x) admet 4 solutions : x = -7; x = -5; x = 3 et x = 6

b. Les courbes C_f et C_h se coupent en A, B et F, donc l'équation f(x) = h(x) admet 3 solutions : x = -7; x = -5 et x = 6

c. Les courbes C_g et C_h se coupent en A, B, C, D et F, donc l'équation g(x) = h(x) admet 5 solutions : x = -7; x = -5; x = -2; x = 0 et x = 6

d. La courbe C_f est au-dessus de Cg avant A et entre B et E, donc l'inéquation $f(x) \ge g(x)$ est vraie pour $x \in [-8; -7] \cup [-5; 3] \cup [6; 8]$

e. La courbe C_f est au-dessous de Ch entre A et B et après F, donc pour $x \in]-7$; -5[\cup]6; 8]

f. La courbe C_g est au-dessus de C_h avant A, entre B et C et entre D et F, donc l'inéquation g(x) > h(x)est vraie pour $x \in [-8; -7[\cup]-5; -2[\cup]0; 6[$